Tuesday, April 24, 2018

Sony Stacked Vision Chip Paper

MDPI Special Issue on the 2017 International Image Sensor Workshop keeps publishing papers presented at the workshop. Sony paper "Design and Performance of a 1 ms High-Speed Vision Chip with 3D-Stacked 140 GOPS Column-Parallel PEs" by Atsushi Nose, Tomohiro Yamazaki, Hironobu Katayama, Shuji Uehara, Masatsugu Kobayashi, Sayaka Shida, Masaki Odahara, Kenichi Takamiya, Shizunori Matsumoto, Leo Miyashita, Yoshihiro Watanabe, Takashi Izawa, Yoshinori Muramatsu, Yoshikazu Nitta, and Masatoshi Ishikawa presents:

"We have developed a high-speed vision chip using 3D stacking technology to address the increasing demand for high-speed vision chips in diverse applications. The chip comprises a 1/3.2-inch, 1.27 Mpixel, 500 fps (0.31 Mpixel, 1000 fps, 2 × 2 binning) vision chip with 3D-stacked column-parallel Analog-to-Digital Converters (ADCs) and 140 Giga Operation per Second (GOPS) programmable Single Instruction Multiple Data (SIMD) column-parallel PEs for new sensing applications. The 3D-stacked structure and column parallel processing architecture achieve high sensitivity, high resolution, and high-accuracy object positioning."

Nondestructive Photon Detection

APS Physics publishes Washington University article "Viewpoint: Single Microwave Photons Spotted on the Rebound" by Kater W. Murch.

"Single optical photon detectors typically absorb an incoming photon and use that energy to generate an electrical signal, or “click,” that indicates the arrival of a single quantum of light. Such a high-precision measurement—at the quantum limit of detection—is a remarkable achievement, but the price of that click is in some cases too high, as the measurement completely destroys the photon. If the photon could be saved, then it could be measured by other detectors or entangled with other photons. Fortunately, there is a way to detect single photons without destroying them.

This quantum nondemolition photon detection was recently demonstrated in the optical domain, and now the feat has been repeated for microwaves. Two research groups—one based at the Swiss Federal Institute of Technology (ETH) in Zurich and the other at the University of Tokyo in Japan—have utilized a cavity-qubit combination to detect a single microwave photon through its reflection off the cavity.

The non-destructive optical photon detection paper has been published in 2013 and described in Photonics magazine:

"Andreas Reiserer and colleagues at the Max Planck Institute of Quantum Optics have developed a device that leaves the photon untouched upon detection.

In their experiment, Reiserer, Dr. Stephan Ritter and professor Gerhard Rempe developed a cavity consisting of two highly reflecting mirrors closely facing each other. When a photon is put inside the cavity, it travels back and forth thousands of times before it is transmitted or lost, leading to strong interaction between the light particle and a rubidium atom trapped in the cavity. By reflecting the photon away from the device, the team was able to detect the photon by changing its phase rather than its energy.

The phase shift of the atomic state is detected using a well-known technique.

I'm not sure what is the practical use of these experiments for image sensing. In theory, an invisible image sensor can be created that detects and releases all the incoming photons without absorbing them.

Prophesee Event-Driven Reference Design

EETimes: Prophesee (former Chronocam) comes up with an event driven sensor reference design for potential customers. The Onboard reference system contains a VGA event-driven camera integrated with Prophesee’s ASIC, Qualcomm’s quad-core Snapdragon processor running at 1.5GHz, 6-axis Inertial Measurement Unit, and interfaces including USB 3.0, Ethernet, micro-HDMI and WiFi (802.11ac), and MIPI CSI-2:

Monday, April 23, 2018

Image Sensor Market is Greater than Lamps

IC Insights Optoelectronic, Sensor, and Discrete (O-S-D) report gives a nice comparison of image sensor business with others. It turns out that the world spends more on image sensing than on the scenes illumination:

LiDAR Patents Review

EETimes publishes Junko Yoshida article "Who’s the Lidar IP Leader?" Few quotes:

"Pierre Cambou, activity leader for imaging and sensors at market-research firm Yole Développement (Lyon, France), said he can’t imagine a robotic vehicle without lidars.

Qualcomm, LG Innotek, Ricoh and Texas Instruments.. contributions are “reducing the size of lidars” and “increasing the speed with high pulse rate” by using non-scanning technologies. Quanergy, Velodyne, Luminar and LeddarTech... focus on highly specific patented technology that leads to product assertion and its application. Active in the IP landscape are Google, Waymo, Uber, Zoox and Faraday Future. Chinese giants such as Baidu and Chery also have lidar IPs.

Notable is the emergence of lidar IP players in China. They include LeiShen, Robosense, Hesai, Bowei Sensor Tech.

Sunday, April 22, 2018

Trinamix and Andanta Company Presentations

Spectronet publishes presentations of two small German image sensor companies - Trinamix and Andanta:

As for 3D imaging, Trinamix complements its initial "chemical 3D imager" idea with a more traditional structured light approach:

Andanta too publishes some info about the company and its products:

Saturday, April 21, 2018


Columbia University, Northwest University and University of Tokio publish a paper "Stretchcam: Zooming Using Thin, Elastic Optics" by Daniel C. Sims, Oliver Cossairt, Yonghao Yu, Shree K. Nayar:

"Stretchcam is a thin camera with a lens capable of zooming with small actuations. In our design, an elastic lens array is placed on top of a sparse, rigid array of pixels. This lens array is then stretched using a small mechanical motion in order to change the field of view of the system. We present in this paper the characterization of such a system and simulations which demonstrate the capabilities of stretchcam. We follow this with the presentation of images captured from a prototype device of the proposed design. Our prototype system is able to achieve 1.5 times zoom when the scene is only 300 mm away with only a 3% change of the lens array's original length."

Friday, April 20, 2018

Thursday, April 19, 2018

Leonardo DRS Launches 10um Pixel Thermal Camera

PRNewswire: The pixel race goes on in microbolometric sensors. Leonardo DRS launches of its Tenum 640 thermal imager, the first uncooled 10um pixel thermal camera core for OEMs.

The Tenum 640 thermal camera module combines small pixel structure with its sensitive vanadium oxide micro-bolometer sensor and a 640 x 512 array. It provides exceptional LWIR imaging at up to 60fps. The high-resolution LWIR camera core features image contrast enhancement, called "ICE™ ", 24-bit RGB and YUV (4,2,2), at sensitivity less than 50 mK NETD.

"The Tenum 640 represents the most advanced, uncooled and cost-effective infrared sensor design available to OEM's today," said Shawn Black, VP and GM of the Leonardo DRS EO&IS business unit. "Our market-leading innovative technologies, such as the Tenum 640, continue to enable greater affordability while delivering uncompromising thermal imaging performance for our customers."